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Mission Overview

e Analyze Europa composrtlon to determlne habrtablllty .
- for NASA's PIanetary Science Division

o  Analyze surface ice composrtlon and potential subsurface Irqwd
water ; : : 3

e Return data and hrgh-resolutlon |mages to earth

e Mission lifetime of 6 months upon Iandlng
o Launch with Falcon Heavy
o Mass budget 1,000 kg uae
o Costbudget $1,160,000,000 .

[1112]
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Structures

Hexagonal frame and skin structuré
with deployable truss landing legs

= A
- AR

Materials and Layout

e Titanium skins

e Aluminum framing

e  Aluminum legs with
ball-joint plates

Finite Element Analysis

e Quasi-Static 6 G loading

e Quasi-Static loading on”
landing :

e Acoustic/vibrational loading
on panel natural frequencies

[31,[41.[5]



Structures

Risk
e Structural failure |
o Mitigated through FEA
e Radiation Exposure
o Mitigated based on historical
success o
e | anding Failures
o Mitigated through FEA

Future Work

e More detailed simulations with -
better machinery
Mass budget
New iteration of landing legs for
strengthening joint




‘o Drill.heavily inspired by
Philae lander

Mechanisms & Deplo_y‘ablves .

e Encompasses the mechanical cdmponents
and moving parts that will aid ECHO in
completing its-mission _

e lLanding leg triad modeled
with classical control
theory

e Pin-puller deployment
mechanism

e Bi-axial Telecom
- positioning mechanism

— .I'I‘) + D;(.I"m — 11) + F[ = ()

= 'Z(I\Vi(fl.i - ‘l‘m) - DI(II - i‘m,)) e RiSkS: & : a5 at L
=1 : o _ Failure of pointing

mechanism
o - Failure of landing leg
deployment mechanism

(6]



Propulsion

~ Perform Orbital Maneuvers & ADCS Adjustments |
Achieve soft touchdown on Europa :

Propulsion Overview - Propellant Requwement‘ ‘
e MMH & MON-3 Propellants e 872Kkg . 3
e Primary Thrusters: . ‘Risk & Non- Technlcal ,

o 7 AR-49 ' . ° Workplace Safety - .
e ADCS Thrusters e Handling & Storage

- o 12 MONARC-1 -~ of Propellants
e ThrustOutput .~ e Component Failure
o T7TN S Future Work
o TWR29 .27 e Decrease Mass

Requirement

[7][8]



Orbital Mechanics

F ubuma wdierk T
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ADCS

Ensures proper orientation of the ECHO
probe from separation to landing on
Europa. :

Sensor Suite Actuator Suite

Star Trackers x2 = ® Reaction Wheels x4
Sun Sensors x4 e RCS Thrusters x12

Magnetometers x2 : Y
IMU x2 - -~ ControlLaw .. -

| Mc = —]\’.',' X qge — Kymn X 0Mepror

Risk: Part Failure —>'Redundancy'incorporated, -
Hardware suitable for high temperature and
radiation fluctuations '

[10], [11]



Thermal Management |

Regulate temperature of lander components

e Hybrid system
o Passive
m MLI and paint
m Heat Pipe (VCHP)

m - RHU

o Active

: m Electric Heaters
mRadiator

e [nitial Thermal FEA
e Jupiter Atmospheric Entry
e Risk Mitigation -
o Radiation exposure from. -
RHU :
o Electric heater failure
[12] ¢ Future Work
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) i Stage
P OW e r : Subsystem Launch Transit Descent Landed
a8 j Scie'uc.e Suile Nominal Nominal Nominal Full
* ) (Variable)
® ReSponSIb|e f0r pI’OVIdIng the pOWGI‘ Mechanisms Nominal Kominal Partial (30 W)
necessary for all other subsystems to CEAL
function for the e.ntirety of their deSign' life B Telecommunication : .
. ; e W) Nominal Nominal Full
o Primary Power: NASA Multi-Mission @

Radioisotope Thermoelectric Generator - Command & Data Full Full Full
ol . (5W
o  Secondary battery array: Lithium Iron il

Phosphate X Propulsion (50 W) Nominal Nominal Full _

. : ADCS (7.5 W) Nominal Nominal Full
PY Power SCthUllng : : : Thermal (25 W) Full Full Full Full
. H " ; Average load of
o A” Components (aSIde from . Total Powes 34 W Marginal, 49-89 W,
Thermal, command and data) kept . Required ' poteatislpeaksof | potentialy larger
X s A ’ >91.5 peaks during
at nominal voltage until needed . scientific activities
o ADCS and Propulsion shutdown - : : : . -
- after landing e e : | i g oo,
2 2 s (PHC:z:ATE) —_ X
. RiSkS: V' U:ON] B i EE +— ELECTROLYTE
o Exposure of public to e b:
radioactive materials o, |GG B =

[16],[17]



. The command & data subsystem consists of the
highly integrated on-board computing system,
data storage unit, and flight software. -

Command & Data

On-board computing system:

Using a centralized
computing system based

on analysis done in PDR

Focus on reliability,
radiation hardness
assurance, size, and
mass ‘ ;
Argotec’s OBC FERMI -
was selected

Risk mitigation:

Follow all workplace
safety regulations
Testing before flight

Data storage method:

Past missions used
multi-layer or triple-layer
cell solid state drives

- More recent technology;
the Hardéned Extremely-
Long Life Information

- Optical System (HELIOS),

-~ .was also considered

Focus on reliability,

- performance, endurance,

and amount of data each

unit is capable of storing

HELIOS was selected

OBC FERMI [12]
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~ Sample HELIOS media [13] -

Flight software:

Several pre-existing flight

- software options were

considered, all of which’

must be modified in-some

way for actual use
Focus on reliability,

flexibility, performance,

and portability " -
core Flight System was
selected ’

Future work:

Implementation within the
lander



*Telecommunication
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| The telecommunication subsystem will use an X-band antenna to transmlt
engineering data and a Ka-band antenna to transmlt scientific data. -

e X-band frequency signals
experience less '
attenuation in harsh
conditions than Ka-band
frequency signals

e Patch antenna selected -

based on analysis in PDR .

e Focus on reliability, power
consumed, gain, mass;
and volume

Future work: ,

e Link budget report based

on simulation

e 1Q Spacecom X- band

- Risk mitigation:

X-band antenna

patch antenna was
- selected
Ka-band antenna o]
o Printech Ka-band patch
antenna was selected

: ‘IQSpaceco.m
X-band antenna

e Follow all workplace - '. [14].

. safety regulations -
e Testing before flight

Printech Ka-band
antenna [15]
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