Europa Habitat and Composition Observation (ECHO) Lander

Design Team 1: Katie August, Joseph Bowers, Constantine Childs, Andrew Olson, Chloe Powell, Aaryan Sonawane, Mae Tringone

Mission Overview

- Analyze Europa composition to determine habitability
 - for NASA's Planetary Science Division
 - Analyze surface ice composition and potential subsurface liquid water
- Return data and high-resolution images to earth
- Mission lifetime of 6 months upon landing
 - Launch with Falcon Heavy
 - Mass budget 1,000 kg
 - Cost budget \$1,160,000,000

Project and Semester Objectives

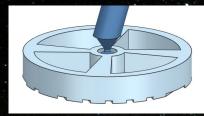
To offer an efficient and cost-effective solution to land and conduct scientific analysis on Europa

ECHO Project

	Customer Here Design Team 1					Legend:		On t	rack	¢		Lov	v risl	K.		Me	d risł	•		Hig	;h ris	k	l	Jnas	sign	ed		
	Project start date:	oject start date: 11/6/2024					November								December													
	Scrolling increment:	5					11	12	13	14	15	16 17	18	19	20 2	1 22	23	24	25 2	5 2	7 28	29	30 1	2	3	4	5	6 7
							٠	1		-			_					-						-			-	-
EC	HO Project	Category	Assigned to	Progress	Start	Days	м	т	w	т	F	s s	м	т	w	F	s	s	м	N	Т	F	s s	м	т	w	т	r s
Pr	oject Selection																											
	Project Selection	On Track	Full Team	100%	11/6/2024	19																						
	Team Statement of Work	On Track	Full Team	100%	11/6/2024	19																						
	Preliminary Design Review Report	Low Risk	Full Team	100%	11/24/2024	17																						
	Midterm Design Presentation Poster	- Low Risk	Full Team	100%	11/24/2024	21																						
	Peer Review of PDR	On Track	Each Member of the Team	100%	12/12/2024	10																						
Fi	nal Design Review Phase																											
	Consideration of non- technical factors and ethical responsibility	On Track	Each Member of the Team	100%	11/6/2024	70																						
	Final Design Review Report	On Track	Full Team	100%	12/16/2024	45																						
	Final Design Review Presentation	On Track	Full Team	50%	1/24/2025	8																						

Technical Analysis

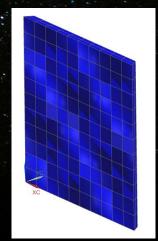
Structures


Hexagonal frame and skin structure with deployable truss landing legs

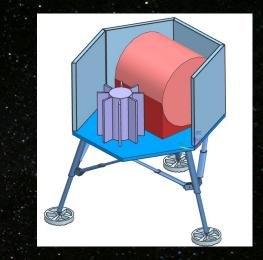
Materials and Layout

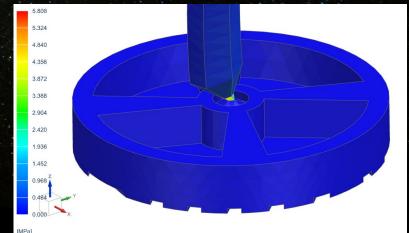
- Titanium skins
- Aluminum framing
- Aluminum legs with ball-joint plates

Finite Element Analysis


- Quasi-Static 6 G loading
- Quasi-Static loading on landing
- Acoustic/vibrational loading on panel natural frequencies

6.290


Structures

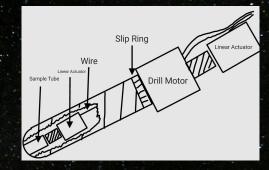

<u>Risk</u>

- Structural failure
 - Mitigated through FEA
- Radiation Exposure
 - Mitigated based on historical success
- Landing Failures
 - Mitigated through FEA

Future Work

- More detailed simulations with better machinery
- Mass budget
- New iteration of landing legs for strengthening joint

Mechanisms & Deployables


- Encompasses the mechanical components and moving parts that will aid ECHO in completing its mission
- Landing leg triad modeled with classical control theory
- Pin-puller deployment mechanism

$$\Sigma F_{i} = K_{i}(x_{m} - x_{i}) + D_{i}(\dot{x}_{m} - \dot{x}_{i}) + F_{I} = 0$$

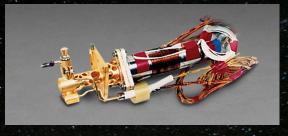
$$\Sigma F_m = M \ddot{x}_m = \sum_{i=1}^3 (K_i (x_i - x_m) + D_i (\dot{x}_i - \dot{x}_m))$$

- Risks:
 - Failure of pointing mechanism
 - Failure of landing leg deployment mechanism

 Drill heavily inspired by Philae lander

Bi-axial Telecom positioning mechanism

Propulsion

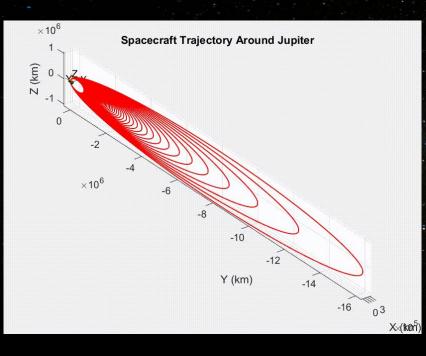

Perform Orbital Maneuvers & ADCS Adjustments Achieve soft touchdown on Europa

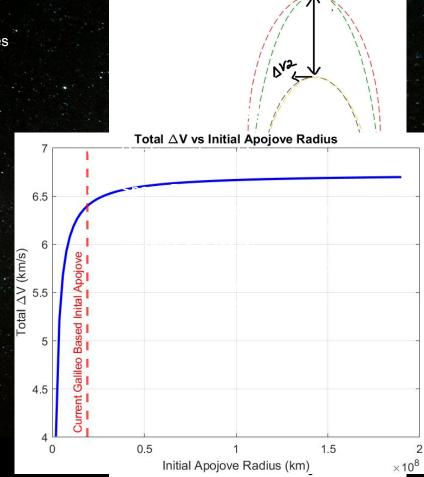
Propulsion Overview

- MMH & MON-3 Propellants
- Primary Thrusters:
 - 7 AR-49
- ADCS Thrusters
 - 12 MONARC-1
- Thrust Output
 - 777 N
 - TWR 2.9

Propellant Requirement
872 kg
Risk & Non-Technical

- Workplace SafetyHandling & Storage
- of PropellantsComponent Failure
- Future Work
 - Decrease Mass Requirement




[7] [8]

Orbital Mechanics

Fukumælyks/iork

- PDeRrAaalygiapiqdedwillidefreal40aikingspesiiog/elghenderhermensfer Series
- Additionary for the two end of two
- An xyztig = trower with an start of the most structure of the most structure of the second structu

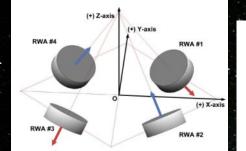
¢∆√ι

ADCS

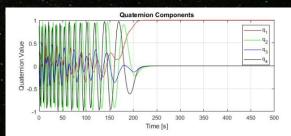
Ensures proper orientation of the ECHO probe from separation to landing on Europa.

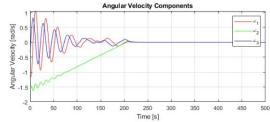
Sensor Suite

- Star Trackers x2
- Sun Sensors x4
- Magnetometers x2
- IMU x2

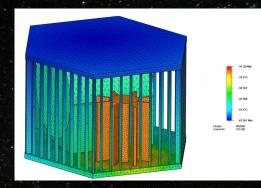

Actuator Suite

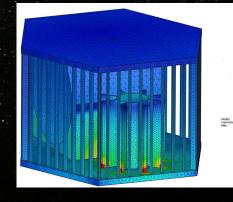
- Reaction Wheels x4
 - RCS Thrusters x12


Control Law


 $M_C = -K_q \times qe - K_{om} \times om_{error}$

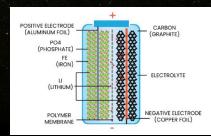
<u>Risk</u>: Part Failure \rightarrow Redundancy incorporated, Hardware suitable for high temperature and radiation fluctuations


Thermal Management


Regulate temperature of lander components

- Hybrid system
 - Passive
 - MLI and paint
 - Heat Pipe (VCHP)
 - RHU
 - Active

- Electric Heaters
- Radiator
- Initial Thermal FEA
- Jupiter Atmospheric Entry
- Risk Mitigation
 - Radiation exposure from RHU
 - Electric heater failure
- [12] Future Work

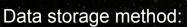


Power

- Responsible for providing the power necessary for all other subsystems to function for the entirety of their design life
 - Primary Power: NASA Multi-Mission Radioisotope Thermoelectric Generator
 - Secondary battery array: Lithium Iron Phosphate
- Power Scheduling
 - All components (aside from Thermal, command and data) kept at nominal voltage until needed
 ADCS and Propulsion shut down after landing
 - Risks:
 - Exposure of public to radioactive materials

Stage												
Subsystem	Launch	Transit	Descent	Landed								
Science Suite (Variable)	Nominal	Nominal	Nominal	Full								
Mechanisms (30-40 W)	Nominal	Nominal	Partial (30 W)	Full								
Telecommunication (4 W)	Nominal	Nominal	Full	Full								
Command & Data (5 W)	Full	Full	Full	Full								
Propulsion (50 W)	Nominal	Nominal	Full	Shutdown								
ADCS (7.5 W)	Nominal	Nominal	Full	Shutdown								
Thermal (25 W)	Full	Full	Full	Full								
Total Power Required	30 W	30 W	34 W Marginal, potential peaks of >91.5 W	Average load of 49-89 W, potentially larger peaks during scientific activities								

Command & Data


The command & data subsystem consists of the highly integrated on-board computing system, data storage unit, and flight software.

On-board computing system:

- Using a centralized computing system based on analysis done in PDR
- Focus on reliability, radiation hardness assurance, size, and mass
- Argotec's OBC FERMI was selected

Risk mitigation:

- Follow all workplace safety regulations
- Testing before flight

- Past missions used multi-layer or triple-layer cell solid state drives
- More recent technology, the Hardened Extremely Long Life Information Optical System (HELIOS), was also considered
 - Focus on reliability, performance, endurance, and amount of data each unit is capable of storing
- HELIOS was selected

OBC FERMI [12]

Sample HELIOS media [13]

Flight software:

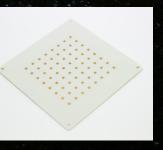
- Several pre-existing flight software options were considered, all of which must be modified in some way for actual use
- Focus on reliability, flexibility, performance, and portability
- core Flight System was selected

Future work:

• Implementation within the lander

Telecommunication

The telecommunication subsystem will use an X-band antenna to transmit engineering data and a Ka-band antenna to transmit scientific data.


- X-band frequency signals experience less attenuation in harsh conditions than Ka-band frequency signals
- Patch antenna selected based on analysis in PDR
- Focus on reliability, power consumed, gain, mass, and volume

Future work:

 Link budget report based on simulation X-band antenna:

- IQ Spacecom X-band patch antenna was selected
 Ka-band antenna:
- Printech Ka-band patch antenna was selected
 Risk mitigation:
 - Follow all workplace safety regulations
 - Testing before flight

IQ Spacecom X-band antenna [14]

Printech Ka-band antenna [15]

References

- [1]NASA, "Europa: Facts NASA Science," science.nasa.gov, 2024. https://science.nasa.gov/jupiter/moons/europa/europa-facts/
- [2]"Europa Clipper NASA's Europa Clipper Mission," NASA, Oct. 13, 2024. https://blogs.nasa.gov/europaclipper/tag/europa-clipper/
- [3] J. Mehta, "Structural Evolution of the TeamIndus Spacecraft That Will Land on the Moon," Medium, Feb.26,2019. https://medium.com/teamindus/structural-evolution-of-the-teamindus-spacecraft-that-will-land-on-the-moon-b5aa6bc73ccc (accessed Dec. 04, 2024).
- [4] Anderson, K. S., "Space Vehicle Systems Engineering," Spacecraft Design, Dynamics & Control Primer, RPI, https://www.rpi.edu/~anderk5/space_vehicle_systems.pdf
- [5] M. S. Escartí-Guillem, L. M. Garcia-Raffi, and S. Hoyas, "Review of Launcher lift-off Noise Prediction and Mitigation," Aug. 2024, Accessed: Dec. 04, 2024. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S2590123024009344#br0010
- Mechanism," Inc., "Type 22 Antenna Positioning New. Accessed: Dec. 08, 2024. [Online]. Available: [6]M. https://www.moog.com/products/space-mechanisms/antenna-pointing-mechanisms/type-22.html
- [7] "MONOPROPELLANT THRUSTERS", 2024, Moog Inc. https://www.moog.com/content/dam/moog/literature/sdg/space/propulsion/moog-MonopropellantThrusters-Datasheet.pdf
- [8] "Bipropellant Tanks", Ariane Group, https://www.space-propulsion.com/spacecraft-propulsion/bipropellant-tanks/index.html
- [9] "IADC Space Debris Mitigation Guidelines Issued by IADC Steering Group and Working Group 4," 2020. Available: <u>https://orbitaldebris.jsc.nasa.gov/library/iadc-space-debris-guidelines-revision-2.pdf</u>
- [10] <u>https://www.satcatalog.com/component/coarse-sun-sensor-pyramid-type</u>
- [11] H. Yoon, H. H. Seo, and H.-T. Choi, "Optimal uses of reaction wheels in the pyramid configuration using a new minimum infinity-norm solution," Aerospace Science and Technology, vol. 39, pp. 109–119, 2014. [Online]. Available: https://doi.org/10.1016/j.ast.2014.09.002.
- [12]Galileo Probe during final assembly. Available: https://nasa.fandom.com/wiki/Atmospheric_entry?file=Galileo_probe.jpg
- Orbital Mech:
- [12] "8.0 Small Spacecraft Avionics NASA," NASA, Oct. 16, 2021. https://www.nasa.gov/smallsat-institute/sst-soa/small-spacecraft-avionics/#8.3
- [13] R. Solomon, E. Rosenthal, R. Grubbs, and B. Solomon, "Next Generation Big Data Storage For Long Space Missions," Jun. 2021. Available: https://ntrs.nasa.gov/api/citations/20205007793/downloads/Next%20Generation%20Big%20Data%20Storage%20for%20Long%20Space%20Missions_fin al.pdf
- [14] "IQ Spacecom X-Band Antenna," IQ Spacecom, May 2024. <u>https://www.iq-spacecom.com/images/Datasheets/IQspacecom_X_Band_Antenna_datasheet_05.2024.pdf</u>
- [15] "Ka-Band Microstrip Patch Array for Cubesat Systems | satsearch," *satsearch*, 2024. https://satsearch.co/products/printech-circuit-laboratories-ka-band-microstrip-patch-array-for-cubesat-systems
- [16]First Phosphate, "About the LFP Battery," First Phosphate Corp. Accessed: Dec. 08, 2024. [Online]. Available: https://firstphosphate.com/phosphate-industry/about-the-lfp-battery/
- [17]U.S. Dept. Of Energy, "What is a Radioisotope Power System?," Energy.gov. Accessed: Dec. 08, 2024. [Online]. Available: <u>https://www.energy.gov/ne/articles/what-radioisotope-power-system</u>

